8/153/61/004/001/006/009 B110/B203 Benzene alkylation with . unsaturated compounds, 10-11% of which was C_2H_4 , the remainder propylene with traces of higher olefines. AlCl, was a commercial preparation, alCl₂°H₂PO₄ was prepared by slow addition of an equimolecular amount of anhydrous H₂PO₄ to AlCl₃ and 10312 hr of heating at 80°C until the stopping of intensive HCl evolution, AlCl₂*HSO₄ by equimolecular addition of the general section of 100% H₂PO₄ with BF₂* Alkylation was performed in a round-bottom flask with introduction of the gas amount calculated. Every 2 hr, gas samples were taken before and after the flask, and tested for C₂H₄a CH₂*CH-CH₂a CO₂ and O₂ by means of an Orsat apparatus. Two layers were formed after 0.5 - 1, hr of stirring and standing overnight. With the use of BF₃°H₂PO₄, only the upper layer contained hydrocarbons. It was washed, treated with 5-10% alkali, washed, dried with CaCl₂, and distilled. With the use of sluminum catalysts, the mixture was poured Card 3/4 Benzene alkylation with \$/153/61/004/001/006/009 intuice. water with HCl. to decompose organic aluminum complexes Four main Tractions were present in the distillates, ethyl benzens, isopropyl benzene, diaTkyl benzene, and polyalkyl benzene. There are 2 tables and 15 references 11 Soviet-bloc and 4 non-Soviet-block The reference to the English language publication reads as follows, Ref. 82 Az Francia, Chem. ASSOCIATION: Voronezhskiy gosudarstvennyy universitet, kafedra organi- ASSOCIATION: Voronezhskiy gosudarstvennyy university, Department of Organic Chemistry) SUBMITTED : APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" 注:對意用語:17月12日,這一時一時日時間的關鍵是這些時期的認識一片至二十名中國的機能與關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的關鍵的 ZAVGORODNIY, S.V.; FILINOV, G.P. Synthesis of p-isopropyl-sec-butylbonzene and its autoxidation. Izv.vys.uchob.zav; khim. i khim.tekh. 4 no.5:792-797 '61. (MIRA 14:11) 1. Voronezhskiy gosudarstvennyy universitet, kafedra organichoskoy khimii. (Benzene) (Oxidation) 89842 S/074/61/030/003/001/001 B117/B202 5.33.00 Zavgorodniy, S. V. AUTHOR: Hydroperoxides of alkyl aromatic hydrocarbons and their derivatives PERIODICAL: Uspekhi khimii, v. 30, no. 3, 1961, 345-385 TEXT: This is a survey of papers on studies of the liquid-phase oxidation of aromatic hydrocarbons and their derivatives with molecular oxygen, i.e., so-called autoxidation. In the USSR K. I. Ivanov, P. G. Sergeyev, T. I. Yurzhenko, B. F. Yerofeyev and their collaborators as well as other scientists greatly contributed to the solution of problems of liquid-phase oxidation of hydrocarbons to hydroperoxides. Thus, methods could be obtained for the production of concentrated hydroperoxides, for their qualitative and quantitative determination in solutions, for their production in pure state and for their conversion into valuable commercial products. A large number of monographs and surveys exists on organic peroxides and hydroperoxides. In textbooks of organic chemistry special sections are devoted to organic peroxides and hydroperoxides. Every year, Card 1/4 89842 S/074/61/030/003/001/001 B117/B202 Hydroperoxides of alkyl aromatic ... Card 2/4 periodicals contain dozens of original papers in which the autoxidation of hydrocarbons is dealt with. In 1958 more than 60 abstracts of papers and patents were published in the RZhKhim. These facts indicate the great importance of autoxidation of hydrocarbons. The first chapter of the present survey deals with the liquid-phase autoxidation of alkyl aromatic hydrocarbons. The author mentions that in the USSR the first large plant for the production of phenol and acetone via i-propyl benzene hydroperoxide has been put into operation in 1946. The second chapter deals with the progress achieved in the field of liquid-phase oxidation of dialkyl benzenes to hydroperoxides. Up to now only few, mainly patent communications have been issued on this field. In the third chapter the author deals with the hardly investigated liquid-phase oxidation of trialkyl benzenes. The fourth chapter is devoted to liquid-phase oxidation of multinuclear aromatic hydrocarbons: A. Oxidation of hydrocarbons with separated benzene nuclei, and B. oxidation of hydrocarbons with condensed benzene nuclei. In the fifth chapter which deals with the liquid-phase oxidation of alkyl benzene derivatives, the author discusses a) oxidation of alkyl halide benzenes; b) oxidation of oxygen-containing compounds; c) oxidation of alkyl nitrobenzenes. In the sixth chapter the author 89842 5/074/61/030/003/001/001 B117/B202 Hydroperoxides of alkyl aromatic... mentions the methods which can be employed for separating and decomposing hydroperoxides. In the seventh chapter the author discusses the mechanism of liquid-phase oxidation of alkyl aromatic hydrocarbons. The author states that the mechanism of liquid-phase oxidation of alkyl aromatic hydrocarbons is based on the theory established by A. N. Bakh (Izbrannyye hydrocarbons is based on the theory established by A. N. Bakh (Izbrannyye trudy, Izd. AN SSSR, 1950, str.144) which, later on, was developed by N. N. Semenov (O nekotorykh problemakh khimicheskoy kinetiki i reaktsienroy sposobnosti, Izd. AN SSSR, 1954) as a free-radical chain mechanism. In the eigth chapter the author deals with the mechanism and the kinetics of the cleavage of hydroperoxides, in the ninth chapter with the cleavage of hydroperoxides into phenols and aliphatic ketones. The tenth chapter deals with the cleavage of hydroperoxides into alcohols, aldehydes or ketones. In the eleventh chapter the author describes the formation of peroxides, and in the twelfth chapter he reports on the application of hydroperoxides as polymerization initiators. V. V. Fedorova, A.M. Sladkcy M. S. Nemtsow, B. D. Kruzhalov, R. Yu. Udris. O. A. Kolmakov, B. I. Golovanenko, M. S. Eventova, R. N. Volkov, V. A. Puchin, P. M. Kuznetsov, P. G. Ivanov, G. A. Razuvayev, Ye. D. Vilyanskaya, Card 3/4 89842 Hydroperoxides of alkyl aromatic... S/074/61/030/003/001/001 B117/B202 R. V. Kucher, N. A. Sokolov, V. A. Shushunov, I. I. Chizhevskaya, E. B. Idel'chik are mentioned. There are 9 figures, 1 table, and 438 references: 104 Soviet-bloc and 334 non-Soviet-bloc. ASSOCIATION: Kiyevskiy politekhnicheskiy institut (Kiyev Polytechnic Institute) X Card 4/4 SHALGANOVA, V.G.; ZAVGORODNIY, S.V. Autoxidation of p-sec-butyltoluene. Zhur.ob.khim. 30 no.10;3223-3226 0 '61. (MIRA 14:4) 1. Voronezhskiy gosudarstvennyy un'versitet. (Toluene) KRYUCHKOVA, V.G.; ZAVGORODNIY, S.V. Alkylation of O-bromophenol by propylene, 1-pentene, and 2-pentene. Zhur. ob. khim. 31 no.2:274-277 F '61. (MIRA 14:2) 1. Voronezhskiy gosudarstvennyy universitet. (Phenol) (Pentene) (Propene) ZAVGORODNIY, S.V.; GONSOVSKAYA, T.B.; SHVETSOVA, L.S.; SIDEL'NIKOVA, V.I.; VAKHTIN, V.G. Use of the compound AlCl₃ H₂PO₄ as the catalyst in the alkylation of aromatic hydrocarbons by olefins. Zhur. ob. khim. 31 no.3:726-731 Mr ¹61. (MIRA 14:3) 1. Voronezhskiy gosudarstvennyy universitet. (Aluminum chloride) (Alkylation) KRYUCHKOVA, V.G.; ZAVGORODNIY, S. V. Alkylation of c-bromoanisole by propylene, 2-butene, and cyclohexone in the presence of EF2H3PO4. Zhur.ob. khim. 31 (MIRA 14:3) 1. Voronezhskiy gosudarstvennyy universitet. (Alkylation) (Anisole) (Boron fluoride) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" VOLKOV, R.N.; ZAVGORODNIY, S.V. Laws governing the autoxidation of polyalkylbenzenes. Liquid phase autoxidation of isopropyl-o-xylenes. Zhur.ob.khim. 31 no.8:2629-2635 Ag '61. (MIRA 14:8) 1. Voronezhskiy gosudarstvennyy universitet. (Xylene) (Oxidation) | | <u> </u> | Mechar | nism of] | actone fo | rmation in | the course | of the 1: | louid-phas | | | |---|-------------|--------|-----------|--------------------|------------|------------|-----------|---------------------|------|---------| | | | atto-o | idation | of certains 5 '61. | n polyalky | lbenzenes. | Zhur.cb. | chim. 31
(MIRA 1 | - | | | | le de la la | 110171 | ,u70=,u97 | , D. OI. | (Benzene |) (Lactone | a). | /IIIII I | 7.77 | | | * | · · · . | · | se i e | | | | | | | | | | | | | | | - | ZAVGORODNIY, S.V.; ALISOVA, E.V. Arylalkylation of anisole with strone and Amethylstyrene in the presence of BF3. H3F04 and BF3.0(C2H5)2. Dokl. AH SSSR 139 no.6:1367-1370 Ag 161. (MIRA 14:8) 1. Kiyevskiy politekhnicheskiy institut. Predstavleno akademikom A.V. Topehiyevym. (Anisole) (Styrene) 3. Luly S/064/62/000/003/004/007 B110/B101 AUTHORS: Zavgorodniy, S. V., Novikov, I. N., Kryuchkova, V. G., Shatalov, V. P. TITLE: Production of hydroperoxides of alkyl aromatic hydrocarbons. Their initiating properties in copolymerization of divinyl with styrene. PERIODICAL: Khimicheskaya promyshlennos;, no. 3, 1962, 29 - 35 TEXT: The synthesis of hydroperoxides of cyclohexylbenzene (I); p-iso-propyl-sec-butylbenzene (II); p-isopropylcyclohexylbenzene (III); p-di-sec-butylbenzene (IV); p-diisopropyl-2-chloro benzene (V) and 1,3,5-triisopropylbenzene (VI) by autoxidation with atmospheric oxygen was studied, propylbenzene (VI) by autoxidation with atmospheric oxygen was studied, as well as their capacity for initiating copolymerization of divinyl with styrene at low temperatures. Oxidation took place in the presence of manganese resinate and alkali: NaOH, Ca(OH)₂, Na₂CO₃, K₂CO₃ at 95 - 120°C. It was found that VI is oxidized the most strongly, II and III are oxidized well, but I, especially in the presence of BaO₂, is oxidized only slowly. Increasing the reaction temperature from 110 to 120°C (5 - 6 Card 1/2. 上生手發形在計量方式では17~。在18章章和聲音主義,音報是影響語:17至章章章可能**認識是個影響的影響的影響的影響的影響著音響影響發音**響為其上 Production of hydroperoxides... S/064/62/000/003/004/007 B110/B101 mg/mole of manganese resinate, 1 - 3 g/mole of soda) caused faster autoxidation and raised the maximum hydroperoxide
concentration of IV; it influenced the oxidation of II and VI and reduced the hydroperoxide concentration of I. In the autoxidation of I (at 95, 110, and 120°C) the addition of manganese resinate and soda produced an optimum effect. In the autoxidation of III it is chiefly mono hydroperoxides of α,α -dimethyl-p-cyclohexylbenzyl that arise. II readily forms a mixture of two mono and one dihydroperoxide Card 2/4 ALISOVA, E.V.; ZAVGORODNIY, S.V. Arylalkylation of phenetole with styrene and A-methylstyrene in the presence of BF3.H3PO4 and BF3. O(C2H5)2. Zhur. ob. khim. 34 no.9:3079-3081 S 164. (MIRA 17:11) KHARCHENKO, L.S.; ZAVGORODNIY, S.V. Alkylation of cresols with butylenes. Ukr. khim. zhur. 30 no.3:261-262 '64. (MTRA 17:10) 1. Kiyevskiy politekhnicheskiy institut i Institut organicheskoy khimii AN UkrESR. # ZAVGORODHIY, V.K. Apparatus for semiautomati; control of a hydraulic press. Khim. prom. no.6:338-346 S '56. (MLRA 10:2) 1. Karacharovskiy zavod plastmass. (Hydraulic presses) (Automatic control) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" | Arrangement for the elimination of hydraulic shock in a page self-contained hydraulic drive. Khim.prom. no.4:241-242 (MLRA 1) | ress with
Je '57.
0:9) | |---|---------------------------------------| | | · · · · · · · · · · · · · · · · · · · | - 1 | sov/123-59-16-68072 Mashinostroyeniye, 1959, Nr 16, p 571 (USSR) Translation from: Referativnyy zhurnal. AUTHOR: Zavgorodniy, V.K. TITLE: Modernization of Rotary Pelleting Presses PERIODICAL: Vestn, tekhn, i ekon, inform. Mezhotrasl, labor, tekhn, ekon, issled. i nauchno-tekhn. inform. N.-i. fiz.-khim. in-ta im. L.Ya. Karpova, 1958, Nr 1 (6), 9 - 21 ABSTRACT: When the rotary pelleting TM-2 machine for the pelleting of phenolaldehyde plastics, amino plastics, pharmaceutical materials and others was modernized the gear box was removed which permitted to reduce the overall dimensions, the weight and the noise of the machine in operation. A central lubrication system, and some alterations in the design of the receiving container and feed bin were suggested, which allowed to put the powder, pouring out from the feed bin, nearer to the rotor. The units of the auxiliary master forms were improved as well as those for pelleting and ejection by changing the profile of the pressure wedge; by lengthening the supporting master form, etc. As a result the service life of the machine parts and mechanisms was in- Card 1/2 # Modernization of Rotary Pelleting Presses 30V/123-59-16-68072 creased. In order to avoid a destruction of the tablets when being pushed out, the face of the puncher was chamfered at an angle of 45° and 1.2 - 1.5 mm in depth, or its surface was given a spherical shape. The machine is protected from overloads and breakdowns by an additional relay of the maximum current and a friction coupling. The MT-2A machine was modernized in an analogous way. It is also stated that the rotary pelleting machine with two-sided pelleting was modernized. They are fitted with devices which facilitate the filling of the dies and warrant the accuracy to weight of the tablets. 1 photo, 14 schemes. Card 2/2 AUTHOR: Frolova, P.V., Rombro, S.Ya. & Zavgorodnes, V.K. TITLE: Measures to economise electric power in a plastics press shop. (Meropriyatiya pe ekonomii elektroenergii v pressovem tsekhe po proizvodstvu izdeliy iz plastmassy.) PERIODICAL: Promyshlennaya Energetika, 1958, Vol.13. No.2. pp.22. (USSR) ABSTRACT: This brief note describes a suggestion of the authors' for which was awarded a fifth premium in the All-Union competition for economy of electric power. In the 'Plastmass' works at Karack-rovsk the authors saved about 500,000 kWh annually by the following economy measures: switching-off electric motors whilst the press platens are stationary in the upper position; thermal insulation of the sides of press tools with sheet asbestos; automatic control of compressed air pressure; and reducing the filament voltage of h.f. valve generators during periods of no-load. AVAILABLE: Library of Congress. 1. Electric power-Economical use Card 1/1 APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" 28(1) SOV/118-59-1-4/16 AUTHOR: Zavgorodniy, V.K. Engineer TITLE: Mechanization and Automation of Pressed Plastic Articles (Mekhanizatsiya i avtomatizatsiya proizvod- stva pressovannykh izdeliy iz plastmassy) PERIODICAL: ABSTRACT: Mekhanizatsiya i Avtomatizatsiya Proizvodstva, 1959, Nr 1, pp 18-24 (USSR) and the second The article stresses the importance of automation and mechanization in plastics production in fulfilling Seven-Year Plant requirements. These aim at boosting plastics production to 6.7 times that of current output. The article explains certain measures taken by some Soviet and foreign plants to increase automation and mechanization of work processes and describes some of the introduced equipment. Such units as the Karacharovskiy plant, plant imeni "Komsomol'skaya Pravda", "Karbolit" plant in Orekhovo-Zuyevo and Card 1/3 SOV/118-59-1-4/16 Mechanization and Automation of Pressed Plastic Articles "Karbolit" plant in Kemerovo increased production mainly by using high-frequency generators for preliminary heating of materials to be pressed, and by introducing semi-automatic control of hydraulic presses. The plant imeni "Komsomol'skaya Pravda" and the "Dinamo" plant also introduced multi-point remote-controlled heating of press forms. The "Tochelektropribor" plant in Kiyev and the plant ""Karbolit" in Orckhovo-Zuyevo have introduced induction heating of press forms on an industrial frequency current. The Karacharovskiy plant has designed and tested four-operation automats for producing component parts of electric counters. It is also operating highly-productive universal and special automats for machining products. Many plants have built up considerable power reserves normally used for driving hydrauliz presses, by using low-pressure liquids (8 kg/cm) for forced lowering of Card 2/3 APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" SOV/118-59-1-4/16 Mechanization and Automation of Pressed Plastic Articles sliding plates. This process applied to 75 100-ton presses, saves 1,000,000 kw/h. per year. Similar rationalization should be introduced into such units as Podol'sk Accumulator plant, Tbilisi Plastics plant and the "Karbolit" plant in Orekhovo-Zuyevo. There are 3 photographs and 10 diagrams. Card 3/3 "APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8 | 2 A | √ G | ORA | DA | ۷ <u>۱</u> ۷ | ٠, ا | l.K | ,
 | | | | | | | | | | | | | | | | | | •
र | | |-------------------------|---|---
---	---	--	--
--	---	--	--
---	--	---	--
--	--	--	--
--	--	--	--
Machinettas Machin	L articles.	1	Contraction L. Pascil For Montri
19(2). 19(2).	Does conclude related and propaganty intel 1. Describishing oring Agency: Consciousing propaganty intel 1. Describishing oring Agency: Consciousing propaganty intel 1. Describishing oring Agency: Consciousing propaganty intel 1. Describishing in the papel 1. The Agency of the Localize book); he is good a principal in the papel 1. The Agency of the Localize book); he is good a principal in the papel 1. The Agency of the Localize book); he is good a principal in the papel 1. The Agency of the Localize book is the papel 1. Described by the Agency of th	The manning remains and the contribution of th	2(2). TOTAL MARKET CONTRIBUTION OF THE STRONG STRO
---|--|--------------------------|---|--------------------------|-------------------------------|--|----------------------------------|--| | Legend to Table 1:
1)No. of experiment, | Таблица 1
Автооки сленно л-дивторичнобутилбензола | | | | | | | | | 2) amount of I,g,
3) manganese resinate,
mg,4)5) additives, | | Взято для авт | тоокисления добавок | | Получе- | Максималь-
ная концен-
трация гид- | Cilling | | | 4) empiric formula, 5) amount, mg | дивторич-
нобутия-
бензола, г | резината и марганца, ма | формула | , uz | г, нассы, | роперекиси
в растворе,
% | Bpens
okuci
nacu: | | | 6)reaction mass ob- | 1 95,2
2 38,6 | 6.0 . | |
125 | 97,8
40,9
51,4 | 54,7 .
54,1
54,6 | 20
17
17 | | | 7)maximum concentra-
tion of hydrogen
peroxide in the solu- | 3 49,2
4 48,2
5 96,5 | 3.0 | Na ₂ CO ₂
Co(OOCCH ₃) ₂
Ca(OH) ₂
Na ₂ CO ₃ | 37
200
250 | 49,6
100,6
49,3 | 54,0
57,2
58,0 | 18
28
20
15
20
43 | | | tion, %
8)duration of the oxida | | 1,5
1,2
3,0
2,2 | Na ₂ CO ₃
Na ₂ CO ₃
Ca(OH) ₂
Na ₂ CO ₃ | 200
500
147
200 | 40,9
100,0
70,3
42,5 | 54,0
51,1
53,2
62,5 | 20 -
43 - | | | tion process, h. | 10 38,1
11 38,0
12 70,0 | 1,2
1,2
2,5
2,7 | Ca(OH),
Ca(OH),
Ca(OH), | 200
148
180 | 42,3
64,5
79.0 | 67,4
43,3
39,3 | 14
17 : :3
25 : | | | | 14 14 48,2 | 3,0 | Na ₂ CO ₃
BaO ₂ | 125
100 | 50,7 | 54,4
2 | 17.5 | | ZAVGORODNIY, V.S.; PETROV, A.A. Methyl- and vinylacetylenylboric esters. Zhur.ob.khim. 31 no.7: 2433-2434 J1 161. (MIRA 14:7) Leningradskiy tekhnologicheskiy institut imeni Lensoveta. (Boron organic compounds) (Boric acid) ## S/051/62/012/002/005/020 E202/E192 AUTHORS: Yakovleva, T.V., Petrov, A.A., and Zavgorodniy, V.S. TITLE: Vibrational spectra and structure of enine tin-hydrocarbons PERIODICAL: Optika i spektroskopiya, v.12, no.2, 1962, 200-203 TEXT: Raman and infra red spectra of trimethyl (vinylethynyl) tin, triethyl (vinylethynyl) tin and triethyl (isopropenylethynyl) tin, were studied in order to find the effect of the increased atomic weight of the heteroatom. All the characteristic groups and bonds were identified in terms the characteristic groups and bonds were identified in terms of their frequencies. On the basis of the present and earlier work in which similar enine silicon hydrocarbons were studied work in which similar enine silicon hydrocarbons were studied (Ref.1: T.V. Yakovleva, A.A. Petrov, Opt. i spektr. v.ll, 594, 1961. Ref.2: T.V. Yakovleva, A.A. Petrov, M.D. Stadnichuk, 1961. Ref.2: T.V. Yakovleva, A.A. Petrov, M.D. Stadnichuk, Opt. i spektr. v.ll, 588, 1961) it was concluded that by exchanging the C- atom with Si, and Sn, in turn, the triple bond frequency of the tin-hydrocarbons is reduced by 20 cm⁻¹ bond frequency with silicon hydrocarbons, and by 90 cm⁻¹ when Card 1/2 Vibrational spectra and S/051/62/012/002/005/020 E202/E192 compared with the pure hydrocarbons. The frequency of the double bond was also slightly lowered. On the other hand the intensity of the triple bond was increased which was due to the change in polarity, coefficient of bond elasticity and the stretching of the electron cloud of this bond. It was thought that some electrons of the triple bond may be partially occupying the unfilled levels of tin atom. No experimental details were given as these were the same as in the previous papers. The measurement of dipole moments was carried out by K.S. Mingaleva. There are 2 figures and 3 tables. SUBMITTED: January 24, 1961 Card 2/2 J.3700 S/020/62/143/004/017/027 B106/B138 AUTHORS: Zavgorodniy, V. S., and Petrov, A. A. TITLE: Tin and lead hydrocarbons containing 1,3-enin radicals PERIODICAL: Akademiya nauk SSSR. Doklady, v. 143, no. 4, 1962, 855-858 TEXT: This is the first time these hydrocarbons have been synthesized. They form in good yields (70-85%) on reaction of trialkyl tin sodium or trialkyl lead sodium with alkenyl bromo-acetylene according to: R₃Me-Na + Br-C₂C-CR'=CH-R"——) R₃Me-C₂C-CR'=CH-R" + NaBr, (Me = Sn, Pb; R = CH₃, C₂H₅; R' and R" = H, CH₃). The reaction is also of note since the halogen alkines mentioned do not usually exchange their halogen for negatively polarized radicals. Reaction conditions: A 25% sodium excess was gradually added over 1 hr to a suspension of triethyl tin chloride or triethyl lead bromide in anhydrous liquid ammonia. To the resulting solution of triethyl tin sodium or triethyl lead sodium a 25% excess of the corresponding alkenyl bromo-acetylene was added drop by drop with thorough mixing. The reaction was at first violent. After 1 hr stirring, Card 1/2 S/020/62/143/004/017/027 B106/B138 Tin and lead hydrocarbons containing ... ether was added. On the following day the pulpy mass was heated in a water bath to remove the ammonia, and then centrifuged. The liquid part was distilled in vacuo. All operations were carried out in nitrogen atmosphere. The tin and lead hydrocarbons synthesized (Table 1) are colorless liquids of unpleasant odor. In pure form and with exclusion of air, they are stable for a long time; but in air they hydrolyze quickly. The lead compounds explode on overheating. On passing from analogously built hydrocarbons to silicon, tin, and lead compounds, the absorption band of the CEC bond in the infrared spectrum shifts steadily toward lower frequencies ($r_{\rm CHC}$ for hydrocarbons 2210 cm⁻¹, for Si hydrocarbons 2150 cm⁻¹, for Sn hydrocarbons 2127 cm⁻¹, for Pb hydrocarbons 2110 cm⁻¹), due not only to increased atomic weights in the carbon—lead series, but also to changes in the nature of the bond between the acetyl carbon and the heteroatom. The bands of the ethylene bonds do not shift. The nuclear magnetic resonance spectra of the tin and lead hydrocarbons differ from those of the analogously built Si hydrocarbons in the lower δ —values for the alkyl radicals bound to heteroatoms. Experimental additions to the enin system of the compounds synthesized failed. The metal — carbon bond was split under the action of halogens, lithium alkyls, or lithium Card 2/4 S/020/62/143/004/017/027 B106/B138 Tin and lead hydrocarbons containing ... aluminum hydride. Nor was catalytic hydrogenation possible, due apparently to poisoning of the catalyst. There are 2 figures and 1 table. The three English-language references are: R. K. Ingham, S. D. Rosenberg, H. Gilman, Chem. Rews, 60, 459 (1960); H. Gilman, J. C. Bailie, J. Am. Chem. Soc., 61, 731 (1939); R. A. Jacobson, W. H. Carothers, J. Am. Chem. Soc., 55, 4667 (1933). ASSOCIATION: Leningradskiy tekhnologicheskiy institut im. Lensoveta (Leningrad Technological Institute imeni Lensovet) PRESENTED: November 13, 1961, by A. N. Nesmeyanov, Academician SUBMITTED: October 27, 1961 Table 1. Constants of enin tin and lead hydrocarbons. Legend: (1) Substance, (2) boiling point, oc, (3) pressure, mm, (4) exp. (5) calculated. Card. 3/4 11,1760 36363 \$/079/62/032/004/007/010 D287/D301 AUTHOR: Petrov, A.A., Zavgorodniv, V.S., and Kormer, V.A. TITLE: Dialkylboron and dialkylaluminum vinylacetylene PERIODICAL: Zhurnal obshchey khimii, v. 32, no. 4, 1962, 1349-1350 TEXT: The present work is a continuation of earlier investigations by the authors on the character of bonds with acetylene and vinylacetylene groups and on the position of these bonds. Dibutylboron iso-propenylacetylene, prepared in a current of nitrogen in ether, had after high-vacuum distillation a boiling point of 22 - 25°C at 0.1 mm pressure, n²⁰ = 1.4509; the substance was instantaneously inflammable on air. The 2145 cm⁻¹ band in the IR spectrum was assigned to treble bond substances, the 1609 cm⁻¹ band to double bond substances, the 900 cm⁻¹ band to the deformation vibrations of the iso-propenyl group. The boron atom, therefore, lowers the frequency of the valency vibrations of the treble bond to the same extent as the Si atom, but has only a negligible effect on the frequency of the double bond valency vibrations. The dialkylaluminum vinylacetylenes Card 1/2 S/079/62/032/004/007/010 D287/D301 Dialkylboron and dialkylaluminum ... were synthesized in an argon current. Both compounds were oils, subject to spontaneous combustion on air, with a characteristic 2075 cm-1 IR absorption band. The compounds polymerize during storage or heating, forming allene adducts by 1,4-addition; their characteristic IR absorption band is at ~1920 cm-1. Tri-iso-butyl aluminum and di-iso-butyl aluminum hydride also form alkyl aluminum vinyl acetylenes with vinyl acetylene, as well as treble bond adducts. Strong characteristic bands appear at 1530 and 2070 cm-1 in the IR spectrum. Frequency of the multiple bonds is shifted towards the usual values when the dialkyl compounds are treated with absolute ether; this also causes a sharp decrease in the intensity of the bands. There are 3 references: 2 Soviet-bloc and 1 non-Soviet-bloc. ASGOCIATION: Leningradskiy tekhnologicheskiy institut im. Lensoveta (Leningrad Institute for Technology im. Lensoviet) SUBMITTED: April 15, 1962 Card 2/2 APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" S/079/62/032/011/004/012 D204/D307 AUTHORS: Zavgorodniy, V.S., and Petrov, A.A. TITLE: Investigations of conjugated systems. CLXIII. Synthesis and properties of 1,3-enyne tin-containing hydro- carbons PERIODICAL: Zhurnal obshchey khimii, v. 32, no. 11, 1962, 3527 - 3532 TEXT: The formation of compounds R₃Sn-C = C-CR' = CHR" (where R is Me or Et, and R', R" are H or Me) was studied by the action of (1) trialkylchlorostannanes on Mg bromovinylacetylene (lotsich reagents) (2) trialkylchlorostannanes on sodium
vinylacetytide, and (3) alkenyl bromoacetylenes on sodium trialkyltin, in liquid ammonia. The highest (up to 85 %) yields were obtained with method (3). Six compounds were prepared: trimethyl vinylacetylenyl, - triethyl vinylacetylenyl - trimethyl propenylacetylenyl, - and triethyl propenylacetylenyl, - and triethyl iso-propelenyl, - trimethyl iso-propenylacetylenyl, - and triethyl iso-propenylacetylenyl - stannanes. The above were colorless liquids with a specific odor, b.p.'s ranging from 46.5 to 105°C at 10 mm Hg, hydro-Card 1/2 Investigations of conjugated ... S/079/62/032/011/004/012 D204/D307 lyzing fairly readily in air and polymerizing in presence of trialkylchlorostannanes to dark, solid products. The compounds could not be hydrogenated over Pd/CaCO3, but reacted with LiAlH4, LiBu and Br2 to give respectively trialkylstannane, trialkylbutylstannane, and trialkylbromostannane. Fission of the Sn-C bond occurred in every case and no addition to the triple bond was observed. There ASSOCIATION: Leningradskiy tekhnologicheskiy institut imeni Lenso-veta (Leningrad Technological Institut imeni Lensovet) SUBMITTED: October 27, 1961 Card 2/2 YAKOVLEVA, T.V.; PETROV, A.A.; ZAVGORODNIY, V.S. Structure and vibrational spectra of enin tin hydrocarbons. Opt. i spektr. 12 no.2:200-203 F '62. (MIRA 15:2) (Tin organic compounds—Spectra) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" ZAVGORODNIY, V.S.; PETROV, A.A. 是在1100日1111日 1111日 111日 111日 111日 111日 111日 111日 111日 111日 111日 11日 Addition of triphenyl radicals to 1,3-enyme tin hydrocarbons. Dokl. AN SSSR 149 no.4:846-849 Ap '63. (MIRA 16:3) 1. Leningradskiy tekhnologicheskiy institut im. Lensoveta. Predstavleno akademikom B.A.Arbusovym. (Trityl group) (Hydrocarbons) (Tin organic compounds) ZAVGORODNIY, V.S.; PETROV, A.A. Preparation of acetylenic tin hydrocarbons by the direct substitution of a tin-containing group for acetylenic hydrogen. Zhur. ob. khim. 33 no.8:2791 Ag 163. (MIRA 16:11) 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. PETROV, A.A.; MINGALEVA, K.S.; ZAVGORODNIY, V.S. Chemistry of unsaturated tin hydrogarbons. Part 4: Diple moments of alkyl-, alkenyl-, and phenylacetylenic tin hydrogarbons. Zhur.ob.khim. 34 no.2:533-535 F '64. (MIRA 17:3) 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. ZAVGORODRIY, V. S.; PETEOV, A. A. Unsaturated tin hydrocarbons, Part 5: Addition of diazonetrane to 1,3-enyme tin hydrocarbons. Abur. ob. Khim. 34 no.6:1931-1936 Je '64. (Min. 17:7) 1. Leningradskiy tekhnologichesziy institut imeni Lensoveta. APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" PETROV, A.A.; ZAVGORODNIY, V.S. Addition of some sodium acetylide to disthyltin. Synthesis of acetylenic tin hydrocarbons. Zhur. ob. khir. 34 20,8:2206 Ag '64. 1. Leningradskiy tekhnologichoskiy institut imoni Lensoveta. # 2AVGORODNIY, V.S.; PETROV, A.A. Trialkyltin diacetylenes. Zhur. ob. khim. 35 no.4:760 Ap 165. (MIRA 18:5) 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. PETROV, A.A.; YELSAKOV, N.V.; ZAVGOROINIY, V.S. LEBEDEV, V.B. Study of H-bonds formed by acetylene compounds by means of nuclear magnetic resonance spectroscopy. Part 7: Interaction with solvetns of acetylenic, diacetylenic, and 1,3-enyme silicon hydrocarbons and tin hydrocarbons. Teoret. 1 eksper. khim. 1 no. 5:697-700 S-0 '65 (MIRA 19:1) 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. Submitted January 25, 1965. ZAVGORODNIY, V.S., PETROV, A.A. Reaction of sodium trialkyltin with bromoacetylene. Zhur. ob. khim. 35 no.51931-932 My '65. (MIRA 18:6) 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. ZAVGORODNIY, V.S.; PETROV, A.A. Addition of triethyllead hydride to discetylene hydrocarbons. Zhur. ob. khim. 35 no.7:1313-1314 J1 '65. (MIRA 18:8) 1. Leningradskiy tekhnologicheskiy institut im. Lensoveta. POLYAKOV, N.S., prof.; BILICHENKO, N.Ya., dotsent; VYSOCHIN, Fe.M., gornyy inzh.; ZAYGORODHIN, Ye.M., gornyy inzh.; LADYCHUK, H.I., gornyy inzh.; WATYETEV, A.I., starshiy laborant Flexible rollers for conveyer belts. Ugol' Ukr. 4 no.7:32-33 Jl '60. (Conveying machinery) (Roller bearings) (Roller bearings) BILICHENKO, N.Ta., kand.tekhn.nauk; VYSOCHIN, Ie.M., inah.; ZAVGORODNIY, Ie.Kh., inah. Equipment for thorough testing of underground belt conveyors. Vop.rud. transp. no.4:126-146 *60. 1. Dnepropetrovskiy gornyy institut im. Artema. (Conveying machinery) BILICHENKO, N.Ya.; ZAVGORODNIY, Ye.Kh.; VYSOCHIN, Ye.M. Measuring torques of driving shafts. Izm.tekh. no.1:23-24 Ja '60. (Shafting) (Torque-Measurement) BILICHENKO, N.Ya., kand. tekhn. nauk; VYSOCHIN, Ye.M., inzh.; ZAVGORODNIY, Ye.Kh., inzh. Over-all studies of RTU-30 belt conveyors. Vop. rud. transp. no.5:7-16 61. (MIRA 16:7) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) ZAVGORODNIY, Ye.Kh., inzh. Studies of the starting conditions of the operation of underground belt conveyors. Vop. rud. transp. no.5:17-20 (MIRA 16:7) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) BILICHENKO, N.Ya.; ZAVGORODNIY, Ye.Kh.; VYSOCHIN, Ye.M.; KLIMOV, V.V. High-duty electric ring dynamometers. Izm.tekh. no.1:21-23 Ja 62. (MIRA: \$1.72) BILICHENKO, N.Ya., kand.tekhn.nauk; VYSOCHIN, Ye.M., inzh.; ZAVGORODNIY, Ye.Kh., inzh. Operating conditions for rubberized conveyer belts. Vop. rud. (MIRA 15;8) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) BILICHENKO, N.Ya., kand.tekhn.nauk; ZAVGORODNIY, Ye.Kh., inzh.; VYSOCHIN, Ye.M., inzh. Overall studies of the KLS-1200 belt conveyor. Vop. rud. transp. no.6:13-24 '62. (MIRA 15:8) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) | convojors, vop, ru | d. transp. no.6 | 124-36 '62. | Dynamic loads on conveyor belts with uneven movement of the conveyers. Vop. rud. transp. no.6:24-36 '62. (MIRA 15:8) | | | | | | | | | | |--|---------------------|---|--|--|--|--|--|--|--|--|--|--| | 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) | $\sum_{i=1}^{n} x_i^2 = x_i^2$ | 1. Dnepropetrovskiy | 1. Dnepropetrovskiy gornyy institut. (Conveying | 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) | 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) | | | | | | | | | ZAVGORODNIY, Ye.Kh., inzh. Study of the dynamic modulus of elasticity of conveyor belts. Vop. rud. transp. no.6:36-43 '62. (MIRA 15:8) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery) BILICHENKO, N. Ya., dotsent; VYSOCHIN, Ye.M., kand.tekhn.nauk; ZAVGORODNIY, Ye.Kh.; GOTOVTSEV, Yu.A., inzh. Some deficiencies in the operation of pulling stations for belt conveyors. Ugol' Ukr. 7 no.6:29-30 Je '63. (MIRA 16:8) 1. Dnepropetrovskiy gornyy institut. BILICHENKO, N.Ya., kand.tekhn.nauk; VYSOCHIN, Ye.M., kand.tekhn.nauk; ZAVGORODNIY, Ye.Kh., kand.tekhn.nauk; GOTOVTSEV, Yu.A., inzh. Comprehensive experimental studies of the KRU-350, KRU-260, and KRU-260A mine conveyors. Vop. rud. transp. no.7:17-45 '63. (MIRA 16:9) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery--Testing) ZAVGORODNIY, Ye.Kh., kand.tekhn.nauk; BILICHENKO, N.Ya., kand.tekhn.nauk; VYSOCHIN, Ye.M., kand.tekhn.nauk Vop. rud. transp. no.7:57-63 '63. (MIRA 16:9) 1. Dnepropetrovskiy gornyy institut. (Conveying machinery—Elastic properties) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" SINELNIKOV, K. D., ZEYDLIK, P. M., FAYNBERG, Ya. G., NERKASHEVICH, A. M., EAVGORODNOV, O. G., SAFRONOV, B. G., DUBOVOY, L. V. and LUTSENKO, E. I. "Experimental Research of High Frequency Properties of Plasma and Magneto-Hydrodynamic Shock Waves." paper to be presented at 2nd UN Intl. Conf. on the peaceful uses of Atomic Energy, Geneva, 1 - 13 Sep 58. | (HIRA 15:2) 1. Kafedra ikhtiologii Moskovskogo gosudarstvennogo universiteta imeni Lomonosova. (FishesPhysiology) | |---| Lagrange St. | AVGORODNAYA, V.K. Diurnal dynamics of flight of the honeybee family (Hymenoptera, Apoidea) in leguminous forage crops. Ent.obos. 33:182-185 '53. (MERA 7:5) | | | | | | | | | idea) | | | | | |--------------|--|--------|--------|--------|-------|----------|--------------|------|-------|-------|------|----|---|---| | | 1. | Vorone | zhskay | a stan | tsiya | zashchit | y raste | niy. | (Bees |) | | | | | | | | • | eg e | 4 | | | | | | • | | | | | | | | | | | | | | -¥ , | •. | | | | | | | | | | | , v. 1 di se | | | | | | | | | | | * * * | | | | | | | | | | - | | | | | | | | | | | | | | | | | | : | • | | | | | 1 | | | | | 19.4 | | | | | | | | 66485 5.3300(A) SOV/20-129-1-31/64 Zavgorodniy, S. V., Zavgorodnyaya, V. L. TITLE: Synthesis and Autoxidation of p-Isopropylcyclohexylbenzene PERIODICAL: Doklady Akademii nauk SSSR, 1959, Vol 129, Nr 1, pp 113 - 116 (USSR) ABSTRACT: In the paper under review the authors investigated the synthesis of the above mentioned substance (I) by cycloalkylation of isopropylbenzene with cyclohexene in the presence of the catalyst BF3.H3PO4 as well as its autoxidation by air. In order to find the optimum conditions of synthesis the reaction was tested at various molar ratios and temperatures between 20 and 850. It was found that the two substances participating in
the reaction react readily and give a 78% yield of the final product (I). For temperatures of 20-25° and a reaction time of 19 hours, the optimum molar ratio of isopropylbenzene:cyclohexene: catalyst was 3:1:0.3. About 6% polycyclohexylisopropylbenzenes (see Reaction Diagram) are formed under these conditions The substance mentioned in the title has 2 tertiary carbon atoms. CIA-RDP86-00513R001964010011-8" APPROVED FOR RELEASE: 03/15/2001 . Synthesis and Autoxidation of p-Inopropyloyclohexylbenzene SOV/20-129-1-31/64 Molecular oxygen attacks mainly these C atoms and thus forms hydroperoxides (see Diagram). After having been purified by 70% H2SO4, (I) is comparatively easily oxidized by oxygen from the air in the presence of manganese resinate or with alkaline additions at 95-120°. The oxygen attack is aimed at the tertiary C atom of the isopropyl group and is stopped by the formation of hydroperoxide of (I) as (II). Since it is more difficult to oxidize the other tertiary C atom (of the cyclohexyl radical) by molecular oxygen, the quantities of cumylcyclohexyl (II) formed are very small. As can be seen from the curves of figure 1 autoxidation of (I) takes place in the following way: At first hydroperoxide of (I) is accumulated in the solution to a well defined maximum. Then hydroperoxide decomposes until it disappears entirely from the reaction mixture. p.Cyclohexylacetophenone and p-cyclohexylphenol are the final products of this oxidation. If manganese resinate alone is added to (I), instead of further resinate alkaline additions (soda or calcium hydroxide)oxidation proceeds much slower. If the concentration of hydroperoxide is highest (61%), is in the presence of manganese resinate, soda, and barium peroxide at 118-1200, and has an air circulation of 30 1/h, autoxidation of (I) proceeds at the fastest rate (6% per Card 2/3 # 66485 Synthesis and Autoxidation of p-Isopropylcyclohexylbenzene SOV/20-129-1-31/64 per hour). The autoxidation rate depends on temperature (Fig 2) as well as on the rate of air circulation. If hydroperoxide is split with concentrated H₂SO₄ cyclohexylphenol and acetone are formed. p-Isopropylphenol was separated in the form of tracesonly. There are 2 figures, 3 tables, and 3 references, 1 of which is Soviet. ASSOCIATION: Voronezhskiy gosudarstvennyy universitet (Voronezh State University) PRESENTED: June 2, 1959, by A. V. Topchiyev, Academician SUBMITTED: June 2, 1959 W Card 3/3 GALUSHKO, V.P.; ZAVGORODNYAYA, Ye.F. Cathodic behavior of a cuprous oxide electrode. Ukr.khim.zhur. 28 no.4:496-499 162. (MIRA 15:8) 1. Dnepropetrovskiy gosudarstvennyy universitet imeni 300-letiya vossoyedineniya Ukrainy s Rossiyey. (Electrodes, Copper) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" ZEMIYAKOV, Ivan Petrovich; ZAVGORODNYI, V.K., inzh., retsenzent; YEVSTAF'YEVA, N.P., red.; DORUTSINA, R.I., tekhn. red. [Machine parts made of capron] Kapron - material dlia detalei machiny. Moskva, Mashgiz, 1961. 97 p. (Nylon) (Machinery—Construction) ABRAMOV, L.M., inzh.; ZHURAVSKIY, L.M., inzh.; ZAVGORODNYI, V.K., inzh., retsenzent; PREOBRAZHENSKIY, A.Yu., red.; EL'KIND, V.D., tekhn. red. [Use of plastics in the manufacture of textile machinery] Primenenie plastmass v tekstil'nom mashinostroenii; iz opyta proizvodstva priadil'nogo oborudovaniia. Moskva, Mashgiz, 1963. 113 p. (MIRA 16:11) (Spinning machinery) (Plastics) APPROVED FOR RELEASE: 03/15/2001 CIA-RDP86-00513R001964010011-8" AUTHOR3: Zavgorodnyy, N.S., 3idochenko, I.M. SOV-101-58-5-6/10 TITLE: A New Method for the Preparation of Raw Material Mixture to Be Fired in Automatic Shaft Furnaces (Novyy metod prigotovleniya syr'yevoy smesi dlya obzhiga v avtomaticheskikh shakhtnykh pechakh) PERIODICAL: Tsement, 1958, Nr 5, pp 25-26 (USSR) ABSTRACT: In the Amvrosiyevskiy Cement Plant Nr 1 the productivity of the shaft furnaces has been increased by various measures to such an extent that the production of the raw material workshop could not supply the needed quantities of raw material. To solve this problem, the moistening of the ground raw material by normal cement slime rather than by water is recommended. The consumption of slime per day amounts to 600 m3 which ensures the additional processing of 300 tons of clinkers per day. For 4 furnaces, 33.5 tons of clinkers must be ground per hour. The slime has a moisture content of 48% and is mixed with ground clinkers with a moisture content of 1%. The briquets have a moisture content of 1%. The briquets have a moisture content of 1%. The new method ensures an adequate supply to all furnaces and saves 8,793 tons of fuel per year. It increases the productivity of the raw material workshop by 22.9%. The homo- Card 1/2 307-101-58-5-6/10 A New Method for the Preparation of Raw Material Mixture to Be Burned in Automatic Shaft Furnaces geneity of the briquets is also increased. The prime cost is reduced by 10 - 11%. ASSOCIATION: Amvrosiyevskiy tsementnyy zavod (Amvrosiyevskiy Cement Plant) 1. Cement--Processing 2. Materials--Preparation 3. Furnaces --Performance Card 2/2 計畫 東K藍色 \$14 20 mm 12